Small Spherical Nilpotent Orbits and K-types of Harish Chandra Modules

نویسنده

  • DONALD R. KING
چکیده

Let G be a connected linear semisimple Lie group with Lie algebra g and maximal compact subgroup K. Let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. Suppose that O is a nilpotent K C -orbit in p C , and O is its Zariski closure in p C . We study the K-type decomposition of the ring of regular functions on O when O is spherical and “small”. We also show that this decomposition gives the asymptotic directions of K-types in any irreducible (g C , K)-module whose associated variety is O. 1. A desingularisation of the closure of a nilpotent K C -orbit in p C Let G be a connected linear semisimple Lie group with Lie algebra g and maximal compact subgroup K. Let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. Suppose that O is a nilpotent K C -orbit in p C , and O is its Zariski closure in p C . O n denotes the normalization of O. If W is an algebraic variety, R[W ] denotes the ring of regular functions on W . We recall some facts related to vector bundles over a homogeneous space M / P for a complex reductive group M and parabolic subgroup P . Let V be a finite dimensional P -module. Then, M×QV = M × V / ∼, where the equivalence relation “∼” is defined by: (gy, v) ∼ (g, y ·v), for g ∈ M , y ∈ P and v ∈ V . The equivalence relation “∼” can be seen as arising from a right action of P on M × V defined as follows: (g, v) · y = (gy, y · v). Then it is easy to check that (g, v) · (y1y2) = [(g, v) · y1] · y2. Also, note that (g, v) ∼ (g, v) · y, for all g ∈ M, v ∈ V, y ∈ P . The equivalence class of (g, v) under ∼ is denoted [g, v]. A key fact is that: R[M ×P V ] = R[M × V ] P , where the P action on R[M × V ] is defined from the P action on M × V : if k ∈ R[M × V ], and y ∈ P , then (k · y)(g, v) = k((g, v) · y) = k(gy, y · v). The equality of the rings above is implemented as follows. If f ∈ R[M ×P V ], then define f̃ on M × V , by f̃(g, v) = f([g, v]). Since f([g, v]) = f([gyy, v]) = f([gy, y · v]), f̃ ∈ R[M × V ] . On the other hand if h ∈ R[M × V ] , then ĥ([g, v]) := h(g, v) is well defined and ĥ ∈ R[M ×P V ]. 2000 Mathematics Subject Classificationn. Primary 22E46; Secondary 14R20, 53D20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrizing Real Even Nilpotent Coadjoint Orbits Using Atlas

Suppose GR is the real points of a complex connected reductive algebraic group G defined over R. (The class of such groups is exactly the class treated by the software package atlas.) Write g R for the dual of the Lie algebra of GR and N R for the nilpotent elements in gR. Then GR acts with finitely many orbits on N via the coadjoint action, and it is clearly very desirable to parametrize these...

متن کامل

GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...

متن کامل

To the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...

متن کامل

CombinaTexas 2018 February 10 – 11 , 2018

In this talk we give combinatorial proofs of q-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitz’s identity, a new proof of the q-Frobenius identity of Garsia and Remmel and of Ehrenborg’s Hankel q-Stirling determinantal identity. We also develop a two parameter generalization to unify identities of Mercier and include a symmetric function versi...

متن کامل

Spherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence

Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006